Models of growth: Longitudinal expectancy-value in elementary mathematics

Sarah M. Karamarkovich ${ }^{1}$ \& Teomara Rutherford ${ }^{2}$
${ }^{1}$ North Carolina State University, ${ }^{2}$ University of Delaware

ABSTRACT

We examined how expectancy and value for math changes throughout two years and found that non-linear models had better fit than linear ones. Motivation generally declined over the two years and was lowest generally declined over the two years and was lowest
during the middle of the school year. Students in 4th during the middle of the school year. Students in
grade had lower motivation than those in 3rd grade.

INTRODUCTION

- Motivation is critical for success (Eccles $\mathbb{\&}$ Wigfield, 2020)
- Motivation, including math motivation, declines in middle childhood (Wigfield et al., 2020)
- This decline may not be linear nor monolithic.

What are trends in expectancies, current value, and future value across two years?

Are these non-linear? The same by grade?

METHOD

- Third $(\mathrm{n}=4,270)$ and fourth $(\mathrm{n}=3,618)$ grade students
- 50% female, 75% qualified for free/reduced lunch, 18% Black, 18% Hispanic, 52% White
- Survey given six times over two years

- Analyses:
- Multilevel random slopes regression
- Linear wave vs wave as factor 'Gadermann et al., 2012

General Findings

- Future math value is the highest for both grades.
- All components remained relatively high (over four on a five-point scale).
- There is a general decline in motivation over two years.

RESULTS

Future Math Value Variance by Leve

Full model better fit than the null? \checkmark Linear model (R^{2} overall $=0.55 \%$) \checkmark Factor model (R^{2} overalall $=0.60 \%$)

Interaction better fit than the full? \checkmark Linear model (R^{2} overall $=0.57 \%$) \checkmark Factor model (R^{2} overarall $=0.64 \%$)
\square Between-Student
\square Within-Student

Linear vs Non-Linear Trends

- Models that treated wave as a factor provided a better fit than those that treated wave as linear.

Differences by Grades

In general, fourth graders had lower motivation than third graders.

- Exception: fourth graders had higher future math value at the beginning of year one.
Future value had steeper decline for fourth graders; expectancy had a steeper decline for third graders.

CONCLUSION

Mathematics motivation had non-linear trends over two years. There was often a dip in motivation mid school year. Fourth graders had lower motivation than third graders.

ACKNOWLEDGEMENTS

This research was funded in part by the National Science Foundation (Grant Number 1544273).

We thank the participating districts, teachers, and students.

INTRODUCTION

- Motivation is critical for success (Eccles \& Wigfield, 2020)
- Motivation, including math motivation, declines in middle childhood (Wigfield et al., 2020)
- This decline may not be linear nor monolithic.

What are trends in expectancies, current value, and future value across two years?
Are these non-linear? The same by grade?

METHOD

- Third ($n=4,270$) and fourth ($n=3,618$) grade students
- 50% female, 75% qualified for free/reduced lunch, 18% Black, 18% Hispanic, 52% White
- Survey given six times over two years

Current Value
Ordinal $\alpha^{*}=.82$

Future Value
Ordinal $\alpha^{*}=.89$
How important will math be to you in the future?

- Analyses:
- Multilevel random slopes regression
- Linear wave vs wave as factor
*Gadermann et al., 2012

RESULTS

Math Expectancy Variance by Level

Between-Student
\square Within-Student
\square Modeled Variance
Full model better fit than the null? \checkmark Linear model $\left(\mathrm{R}^{2}\right.$ overall $\left.=1.11 \%\right)$

Interaction better fit than the full? \checkmark Linear model $\left(R^{2}\right.$ overall $\left.=1.16 \%\right)$

Current Math Value Variance by Level

\square Between-Student
Within-Student

- Modeled Variance

Full model better fit than the null? \checkmark Linear model $\left(R_{\text {overall }}=1.53 \%\right)$

Interaction better fit than the full? X Linear model (R^{2} overall $=1.53 \%$)

Future Math Value

 Variance by Level

> Between-Student
> Within-Student
> Modeled Variance

Full model better fit than the null?
\checkmark Linear model $\left(\mathrm{R}_{\text {overall }}=0.55 \%\right)$

Interaction better fit than the full? \checkmark Linear model $\left(R_{\text {overall }}^{2}=0.57 \%\right)$

RESULTS

Math Expectancy Variance by Level

\square Between-Student
Within-Student
Modeled Variance
Full model better fit than the null?
\checkmark Factor model $\left(\mathrm{R}_{\text {overall }}^{2}=1.31 \%\right)$
Interaction better fit than the full?
\checkmark Factor model $\left(\mathrm{R}_{\text {overall }}=1.38 \%\right)$

Current Math Value Variance by Level

\square Between-Student
Within-Student

- Modeled Variance

Full model better fit than the null?
\checkmark Factor model ($\mathrm{R}^{2}{ }_{\text {overall }}=1.58 \%$)
Interaction better fit than the full?
\checkmark Factor model ($\mathrm{R}^{2}{ }_{\text {overall }}=1.62 \%$)

Future Math Value

 Variance by Level
\square Between-Student
Within-Student
Modeled Variance

Full model better fit than the null?
\checkmark Factor model ($\mathrm{R}^{2}{ }_{\text {overall }}=0.60 \%$)
Interaction better fit than the full?
\checkmark Factor model $\left(R^{2}{ }_{\text {overall }}=0.64 \%\right)$
Future Math Value

RESULTS

Math Expectancy
 Variance by Level

\square Between-Student
\square Within-Student
Full model better fit than the null?
\checkmark Linear model $\left(\mathrm{R}^{2}\right.$ overall $\left.=1.11 \%\right)$
\checkmark Factor model $\left(\mathrm{R}_{\text {overall }}^{2}=1.31 \%\right)$
Interaction better fit than the full? \checkmark Linear model $\left(\mathrm{R}^{2}\right.$ overall $=1.16 \%$) \checkmark Factor model $\left(\mathrm{R}_{\text {overall }}^{2}=1.38 \%\right)$

Current Math Value Variance by Level

\square Between-Student Within-Student

Full model better fit than the null?
\checkmark Linear model $\left(\mathrm{R}^{2}\right.$ overall $\left.=1.53 \%\right)$
\checkmark Factor model (R^{2} overall $=1.58 \%$)
Interaction better fit than the full? XLinear model (R^{2} overall $=1.53 \%$)
\checkmark Factor model ($R_{\text {overall }}^{2}=1.62 \%$)

Future Math Value Variance by Level

Full model better fit than the null?
\checkmark Linear model ($\mathrm{R}_{\text {overall }}=0.55 \%$)
\checkmark Factor model (R^{2} overall $=0.60 \%$)
Interaction better fit than the full? \checkmark Linear model $\left(\mathrm{R}^{2}\right.$ overall $\left.=0.57 \%\right)$
\checkmark Factor model (R^{2} overall $=0.64 \%$)

CONCLUSION

Mathematics motivation had non-linear trends over two years.

There was often a dip in motivation mid school year.

Fourth graders had lower motivation than third graders.

